One Strain Solving Two Problems: Removing Harmful Nutrients in Wastewater and Harvesting Lipids for Biofuel with Immobilized Microalgae
Kirthana and Sarah completing a REM validation test
pdf

Keywords

microalgae
algae beads
wastewater treatment

Categories

Abstract

Microalgae is an applicable solution for the removal of nutrient contaminants (such as nitrogen and phosphorus) that pollute bodies of water. While microalgae can remediate these contaminants when implemented in wastewater treatment, the cultivation of the microalgae is costly. To address this economic obstacle, we maximized the cost-effectiveness and removal efficiency of the microalgae treatment with immobilized Chlorella pyrenoidosa and Scenedesmus quadricauda, highly efficient and adaptable strains, and the addition of a plant hormone. After nutrient removal, we used the remaining microalgae content to address an additional problem: emissions from conventional transportation fuel. The resulting increase in biomass and lipid yield from the debeaded microalgae has the potential to create a biofuel alternative, and hence, decrease the cost of wastewater treatment. The data we achieved for nitrate-N was promising; the nitrate-N levels in full-strength wastewater decreased from 35.5 mg/L to 3.8 mg/L in 7 days and the nitrate-N content in 25% wastewater (with the same beads/flask and zeatin concentration) decreased from 9.9 mg.L to 1.4 mg/L in 2 days. While the ammonium-N did not reach nutrient starvation, the full-strength wastewater removed ammonium-N from 26.6 mg/L to 5.7 mg/L, reaching near-starvation levels (< 2 mg/L). The phosphorus removal data is still being processed. The lipid yield data was inconclusive due to the samples not reaching nutrient starvation levels (2 mg/L of nitrate-N, 2 mg/L ammonium-N).

pdf

References

Ahmed, S. F., Mofijur, M., Parisa, T. A., Islam, N., Kusumo, F., Inayat, A., ... & Ong, H. C. (2022). Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere, 286, 131656. https://doi.org/10.1016/j.chemosphere.2021.131656

Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. (2019). Promising evolution of biofuel generations. Subject review. Renewable Energy Focus, 28, 127-139. https://doi.org/10.1016/j.ref.2018.12.006

Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., ... & Ripple, W. J. (2021). Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio, 50(1), 85-94. https://doi.org/10.1007/s13280-020-01318-8

Anand, J., Ramamoorthy, K., Sagaya John Paul, J., Sreekala, K. G., Sathuvan, M., Bhavani, L., & Nagaraj, S. (2022). Oil cake extract as low-cost alternative media for increasing lipid and biomass productivity in Scenedesmus quadricauda for biofuel applications. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-022-03135-3

Ananthi, V., Raja, R., Carvalho, I. S., Brindhadevi, K., Pugazhendhi, A., & Arun, A. (2021). A realistic scenario on microalgae based biodiesel production: Third generation biofuel. Fuel, 284, 118965. https://doi.org/10.1016/j.fuel.2020.118965

Arya, S. (2021). Freshwater Biodiversity and conservation challenges: A Review. International Journal of Biological Innovations, 03(01), 75–78. https://doi.org/10.46505/ijbi.2021.3106

Cao, S., Teng, F., Lv, J., Zhang, Q., Wang, T., Zhu, C., Li, X., Cai, Z., Xie, L., & Tao, Y. (2022). Performance of an immobilized microalgae-based process for wastewater treatment and biomass production: nutrients removal, lipid induction, microalgae harvesting and dewatering. Bioresource Technology, 127298. https://doi.org/10.1016/j.biortech.2022.127298

Cazzolla Gatti, R. (2016). Freshwater Biodiversity: A review of local and global threats. International Journal of Environmental Studies, 73(6), 887–904. https://doi.org/10.1080/00207233.2016.1204133

Chambers, P. A., Culp, J. M., Glozier, N. E., Cash, K. J., Wrona, F. J., & Noton, L. (2006). Northern Rivers Ecosystem initiative: Nutrients and dissolved oxygen – issues and impacts. Environmental Monitoring and Assessment, 113(1-3), 117–141. https://doi.org/10.1007/s10661-005-9099-z

Chen, G., Zhao, L., & Qi, Y. (2015). Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Applied Energy, 137, 282–291. https://doi.org/10.1016/j.apenergy.2014.10.032

Chen, F., Xiao, Y., Wu, X., Zhong, Y., Lu, Q., & Zhou, W. (2020). Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in Aquaculture. RSC Advances, 10(35), 20794–20800. https://doi.org/10.1039/d0ra03090b

Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2018). The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews, 90, 336-346. https://doi.org/10.1016/j.rser.2018.03.073

De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource technology, 101(6), 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043

Deshmukh, S., Kumar, R., & Bala, K. (2019). Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technology, 191, 232-247. https://doi.org/10.1016/j.fuproc.2019.03.013

Dewangan, A., Yadav, A. K., & Mallick, A. (2018). Current scenario of biodiesel development in India: prospects and challenges. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(20), 2494-2501. https://doi.org/10.1080/15567036.2018.1502849

Ferrando, L., & Matamoros, V. (2020). Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae-based systems. Science of the Total Environment, 703, 134740. https://doi.org/10.1016/j.scitotenv.2019.134740

Geremia, E., Ripa, M., Catone, C. M., & Ulgiati, S. (2021). A review about microalgae wastewater treatment for bioremediation and biomass production—a new challenge for Europe. Environments, 8(12), 136. https://doi.org/10.3390/environments8120136

Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., Kundzewicz, Z. W., Rastgooy, J., Warren, R., & Schellnhuber, H. J. (2013). Asynchronous exposure to global warming: Freshwater Resources and terrestrial ecosystems. Environmental Research Letters, 8(3), 034032. https://doi.org/10.1088/1748-9326/8/3/034032

Gleick, P. H., & Cooley, H. (2021). Freshwater Scarcity. Annual Review of Environment and Resources, 46(1), 319–348. https://doi.org/10.1146/annurev-environ-012220-101319

Gopalakrishnan, Gayathri; Negri, M. Cristina; Wang, Michael; Wu, May; Snyder, Seth W.; LaFreniere, Lorraine (2009). Biofuels, Land, and Water: A Systems Approach to Sustainability. Environmental Science & Technology, 43(15), 6094–6100. https://doi.org/10.1021/es900801u

Higgins, B. T., Thornton-Dunwoody, A., Labavitch, J. M., & VanderGheynst, J. S. (2014). Microplate assay for quantitation of neutral lipids in extracts from microalgae. Analytical biochemistry, 465, 81-89. https://doi.org/10.1016/j.ab.2014.07.020

Infrastructure Report Card. (2022, July 12). Wastewater. ASCE's 2021 Infrastructure Report Card. Retrieved November 28, 2022, from https://infrastructurereportcard.org/cat-item/wastewater-infrastructure/#:~:text=as%20septic%20tanks.-,Capacity,systems%20such%20as%20septic%20tanks.

Joshi, Girdhar; Pandey, Jitendra K.; Rana, Sravendra; Rawat, Devendra S. (2017). Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 79(), 850–866. https://doi.org/10.1016/j.rser.2017.05.185

Kaplan, D. (2013). Absorption and adsorption of heavy metals by microalgae. Handbook of microalgal culture: applied phycology and biotechnology, 2, 602-611.

Khatoon, H., Penz Penz, K., Banerjee, S., Redwanur Rahman, M., Mahmud Minhaz, T., Islam, Z., Ara Mukta, F., Nayma, Z., Sultana, R., & Islam

Amira, K. (2021). Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresource Technology, 338, 125529. https://doi.org/10.1016/j.biortech.2021.125529

Kumari, P., Varma, A. K., Shankar, R., Thakur, L. S., & Mondal, P. (2021). Phycoremediation of wastewater by Chlorella pyrenoidosa and utilization of its biomass for biogas production. Journal of Environmental Chemical Engineering, 9(1), 104974. https://doi.org/10.1016/j.jece.2020.104974

Lalung, J., Tan, K. A., Morad, N., Ismail, N., Wan Omar, W. M., Khan, M. A., Sillanpää, M., & Rafatullah, M. (2021). Post-treatment of palm oil mill effluent using immobilised Green Microalgae Chlorococcum Oleofaciens. Sustainability, 13(21), 11562. https://doi.org/10.3390/su132111562

Liu, A., Guo, Q., Bandala, E. R., Goonetilleke, A., Hong, N., & Li, Y. (2021). Application of chlorella pyrenoidosa embedded biochar beads for water treatment. Journal of Water Process Engineering, 40, 101892. https://doi.org/10.1016/j.jwpe.2020.101892

Maliha, A., & Abu-Hijleh, B. (2022). A review on the current status and post-pandemic prospects of third-generation biofuels. Energy Systems, 1-32. https://doi.org/10.1007/s12667-022-00514-7

March, H. (2015). The politics, geography, and Economics of Desalination: A Critical Review. WIREs Water, 2(3), 231–243. https://doi.org/10.1002/wat2.1073

Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. https://doi.org/10.1016/j.jwpe.2021.102009

Ogunkunle, O., & Ahmed, N. A. (2021). Overview of biodiesel combustion in mitigating the adverse impacts of engine emissions on the sustainable human–environment scenario. Sustainability, 13(10), 5465. https://doi.org/10.3390/su13105465

Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero‐Oñate, C., Ferrando‐Climent, L., ... & Funk, C. (2021). Wastewater treatment by microalgae. Physiologia Plantarum, 173(2), 568-578. https://doi.org/10.1111/ppl.13427

Ramya, A. N., Ambily, P. S., Sujitha, B. S., Arumugam, M., & Maiti, K. K. (2017). Single cell lipid profiling of Scenedesmus quadricauda CASA-CC202 under nitrogen starved condition by surface enhanced Raman scattering (SERS) fingerprinting. Algal research, 25, 200-206. https://doi.org/10.1016/j.algal.2017.05.011

Rempel, A., Gutkoski, J. P., Nazari, M. T., Biolchi, G. N., Cavanhi, V. A. F., Treichel, H., & Colla, L. M. (2021). Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Science of the Total Environment, 772, 144918. https://doi.org/10.1016/j.scitotenv.2020.144918

Rural Community Assistance Partnership. (2015, August 18). Wastewater treatment video 1: Introduction. YouTube. Retrieved October 2, 2022, from https://WWw.youtube.com/watch?v=1jrdTfXfY8g&t=26s

Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass and bioenergy, 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019

Solé, A., & Matamoros, V. (2016). Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere, 164, 516–523. https://doi.org/10.1016/j.chemosphere.2016.08.047

Sulochana, S. B., & Arumugam, M. (2016). Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource technology, 213, 198-203. https://doi.org/10.1016/j.biortech.2016.02.078

Sousa, H., Sousa, C. A., Simões, L. C., & Simões, M. (2022). Microalgal-based removal of contaminants of emerging concern. Journal of Hazardous Materials, 423, 127153. https://doi.org/10.1016/j.jhazmat.2021.127153

Union County. (2016). Alkalinity. Retrieved April 22, 2023, from https://WWw.union-county.org/wp-content/uploads/2016/09/WQ_narrative_for_Water_Availability_Table_20170215.pdf

Wang, Q., Zhou, X., Jin, W., Zhang, C., Liang, Y., He, Z., Chen, Y., Han, W., & Jiang, G. (2021). Enhancing cultivation of biodiesel-promising microalgae chlorella pyrenoidosa using plant hormones in municipal wastewater. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01755-9

Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871. https://doi.org/10.1002/elsc.201900071

Yadav, G., Shanmugam, S., Sivaramakrishnan, R., Kumar, D., Mathimani, T., Brindhadevi, K., Pugazhendhi, A., & Rajendran, K. (2021). Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel, 285, 119093. https://doi.org/10.1016/j.fuel.2020.119093

Yang, L., Chen, J., Qin, S., Zeng, M., Jiang, Y., Hu, L., ... & Wang, J. (2018). Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnology for biofuels, 11(1), 1-12. https://doi.org/10.1186/s13068-018-1041-z

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Michelle Houser, Isabella Zirn