The Effect of Tire Wear Micro-Particles on The Photosynthetic Function and Morphology of Chlorella Vulgaris
pdf

Supplementary Files

Poster

Categories

Abstract

The Earth’s environment constantly changes as humans make technological advancements. The development of plastics produces many benefits for humanity but is harmful to the environment because plastics break down into small particles and take hundreds of years to decompose fully. One of the most common microplastics is tire wear particles that wash into waterways. Once in the freshwater or saltwater environments, the particles interact with living organisms such as algae. A common unicellular freshwater alga named Chlorella vulgaris uses photosynthesis to create energy. The algae utilize this energy to grow and reproduce. Through testing the optical density and examining the algae under a microscope, the effects of tire wear particles on C.vulgaris were investigated. When TWPs are present in the environment of C. vulgaris, the morphology and photosynthetic function are negatively impacted.

pdf

References

A. Beji, K. Deboudt, S. Khardi, Muresan, B., Flament, P., M. Fourmentin, & L. Lumière. (2020). Non-exhaust particle emissions under various driving conditions: Implications for sustainable mobility. Transportation Research Part D-Transport and Environment; https://www.semanticscholar.org/paper/Non-exhaust-particle-emissions-under-various-for-Beji-Deboudt/2b08a599c2b27937e9cac4dec0ba6cd4cfb0177a.

ACIR Community. (2023). Usda.gov. https://acir.aphis.usda.gov/s/cird-taxon/a0u3d000000DNQ2AAO/chlorella-vulgaris.

Aigner, S., Glaser, K., Erwann Arc, Holzinger, A., Schletter, M., Karsten, U., & Kranner, I. (2020). Adaptation to Aquatic and Terrestrial Environments in Chlorella vulgaris (Chlorophyta). Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.585836

Algae Research Supply. (2014). Chlorella vulgaris and Chlorella pyrenoidosa. Algae Research Supply. https://algaeresearchsupply.com/pages/chlorella-vulgaris-and-chlorella-pyrenoidosa

Barron, K. (2023, January 24). Chlorella Vulgaris: Single-celled Microalgae - WholisticMatters. WholisticMatters. https://wholisticmatters.com/chlorella-vulgaris-microalgae/.

Bit by bit, microplastics from tires are polluting our waterways. (2023). ScienceDaily. https://www.sciencedaily.com/releases/2023/09/230905124943.htm

By 2030, there could be 300 million tons of plastic in the oceans. (2020, November 4). Earth.com. https://www.earth.com/news/300-million-tons-plastic-oceans/

Chlorella vulgaris. (2023). Chlorella vulgaris. Micropia.nl. https://www.micropia.nl/en/discover/microbiology/chlorella-vulgaris/.

Chu, B., Bình, T., Peterson, C. G., & Kelly, J. J. (2015, April 29). Comparing Acute Effects of a Nano-TiO 2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using... ResearchGate; PLOS. https://www.researchgate.net/publication/275649599_Comparing_Acute_Effects_of_a_Nano-TiO_2_Pigment_on_Cosmopolitan_Freshwater_Phototrophic_Microbes_Using_High-Throughput_Screening#pf7.

Cunningham, B., Harper, B., Brander, S., & Harper, S. (2022). Toxicity of micro and nano tire particles and leachate for model freshwater organisms. Journal of Hazardous Materials, 429, 128319–128319. https://doi.org/10.1016/j.jhazmat.2022.128319.

Dídac Navarro-Ciurana, M. Corbella, & Meroño, D. (2023). Effects of Road Dust Particle Size on Mineralogy, Chemical Bulk Content, Pollution and Health Risk Analyses. International Journal of Environmental Research and Public Health, 20(17), 6655–6655. https://doi.org/10.3390/ijerph20176655.

Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., & Stohl, A. (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1), 1-11. https://doi.org/10.1038/s41467-020-17201-9

Gibbens, S. (2019, June 5). You eat thousands of bits of plastic every year. Environment; National Geographic. https://www.nationalgeographic.com/environment/article/you-eat-thousands-of-bits-of-plastic-every-year#:~:text=Now%2C%20a%20new%20study%20in,number%20is%20more%20than%2074%2C000.

Habasi Patrick Manzi, Reda A.I. Abou-Shanab, Jeon, B., Wang, J., & Salama, E.-S. (2022). Algae: a frontline photosynthetic organism in the microplastic catastrophe. Trends in Plant Science, 27(11), 1159–1172. https://doi.org/10.1016/j.tplants.2022.06.005.

He, X., Dai, J., & Wu, Q. (2016). Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01047

Hyun Joon Kong, Kaigler, D., Kim, K., & Mooney, D. J. (2004). Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules, 5(5), 1720–1727. https://doi.org/10.1021/bm049879r

Järlskog, I., Jaramillo-Vogel, D., Rausch, J., Gustafsson, M., Strömvall, A., & Andersson-Sköld, Y. (2022). Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environment International, 170, 107618. https://doi.org/10.1016/j.envint.2022.107618

Joël Fleurence, & Levine, I. A. (2018). Antiallergic and Allergic Properties. Elsevier EBooks, 307–315. https://doi.org/10.1016/b978-0-12-811405-6.00014-1

Josephine, A., Thalavai Shivasankarasubbiah Kumar, Baskaran Surendran, Sundaram Rajakumar, Ramalingam Kirubagaran, & Gopal Dharani. (2022). Evaluating the effect of various environmental factors on the growth of the marine microalgae, Chlorella vulgaris. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.954622

Mehdi Khoshnamvand, Parichehr Hanachi, Ashtiani, S., & Walker, T. R. (2021). Toxic effects of polystyrene nanoplastics on microalgae Chlorella vulgaris: Changes in biomass, photosynthetic pigments and morphology. Chemosphere, 280, 130725–130725. https://doi.org/10.1016/j.chemosphere.2021.130725

Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80-85. https://doi.org/10.1016/j.ecoenv.2011.11.012

Panahi, Y., Behrad Darvishi, Narges Jowzi, Fatemeh Beiraghdar, & Amirhossein Sahebkar. (2015). Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties. Current Pharmaceutical Design, 22(2), 164–173. https://doi.org/10.2174/1381612822666151112145226

Pikula, K., Чернышев, В. В., Zakharenko, A. M., Владимир Чайка, Waissi, G., Le Hong Hai, To Trong Hien, Aristidis Tsatsakis, & Golokhvast, K. S. (2019). Toxicity assessment of particulate matter emitted from different types of vehicles on marine microalgae. Environmental Research, 179, 108785–108785. https://doi.org/10.1016/j.envres.2019.108785.

Redondo‐Hasselerharm, P. E., Vera, Mintenig, S. M., Verschoor, A., & Koelmans, A. A. (2018). Ingestion and Chronic Effects of Car Tire Tread Particles on Freshwater Benthic Macroinvertebrates. Environmental Science & Technology, 52(23), 13986–13994. https://doi.org/10.1021/acs.est.8b05035.

University of California Museum of Paleontology. (2024, April 10). University of California Museum of Paleontology. Berkeley.edu. https://ucmp.berkeley.edu/

Vandamme, D., Pontes, S., Koen Goiris, Foubert, I., Luc Pinoy, & Koenraad Muylaert. (2011). Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering, 108(10), 2320–2329. https://doi.org/10.1002/bit.23199

Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 34(7), 1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004.

Zhu, H., Fu, S.-F., Zou, H., Su, Y., & Zhang, Y. (2021). Effects of nanoplastics on microalgae and their trophic transfer along the food chain: recent advances and perspectives. Environmental Science: Processes & Impacts, 23(12), 1873–1883. https://doi.org/10.1039/d1em00438g.

Zhu, J., Cai, Y., Minato Wakisaka, Yang, Z., Yin, Y., Fang, W., Xu, Y., Omura, T., Yu, R., & Lim, A. (2023). Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Science of the Total Environment, 896, 165200–165200. https://doi.org/10.1016/j.scitotenv.2023.165200

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Guinevere Andrews, Lauren Larson, Claire